

Taking Programming to the Extreme
By Erik Sherman July 19, 2002

The quest for quality software may require programmers to lose the cowboy
attitude and learn to cooperate.

Mansour Raad had a big problem. His start-up firm, DiscoverCast, was developing
collision-detection software for the airline industry—mistakes in the code could cost
lives. But money dried up after a first round of funding, and hiring additional
programmers to finish a bug-proof version was out of the question.

So Raad instigated a relatively new coding discipline called extreme programming.
Instead of working alone on individual assignments, programmers paired off, one
writing code while the other watched and critiqued—providing both a critical eye
and critically important backup. “[My wife] had a baby, but the project had to go
on,” says Raad. “Because I was showing it to the other people, someone could
step into my shoes.” The company met deadlines without an increase in errors
because of the communication.

Most programmers are no more satisfied with software quality than their
customers. Now a growing number are trying to find ways to create solid software in a market that expects new
products and enhancements and wants them fast. Increasingly, software companies are turning to development
strategies with names like “agile development” and “extreme programming”—adrenaline-charged catchphrases
well-suited to coders’ self-image as rugged heroes of the information age. In reality, the trend—which has a long
history—signals a rejection of prima donna programming in favor of teamwork and collaboration.

In the software industry, buggy code has long been accepted as a fact of life—albeit an aggravating and
expensive one (TR). “The problem is that in software, people
place too much trust in their own ingenuity,” says Michael Stiefel, a consultant who trains clients in software
reliability methods. “I’d watch all these young guys in their 20s making the same mistakes we made in the ‘70s
and ‘80s, and I wonder why we have to go through all this again.”

see “ ,” Why Software Is So Bad July/August 2002

To reduce errors, reformers are touting approaches to software engineering—known in the industry as “agile
development”—that stress teamwork, collaboration with end users, and a flexible approach to change. To build
its collision-avoidance software, Raad’s company used one type of agile development, called “extreme
programming,” which emphasizes constant testing as well as collaboration.

“If you are able to apply [a collaborative environment] at its full power, the quality of the products will be
better,” says Michele Marchesi, a leading advocate of extreme programming and professor of electrical
engineering at the University of Cagliari in Italy.

One of the most powerful aspects of agile programming is so-called peer programming, in which developers
partner and take turns writing code and explaining its logic to the other. Pairs are temporary, periodically
splitting and swapping to encourage even more interaction. New eyes examine each piece of code, creating a
process of continuous review.

“Two people can bounce ideas off each other,” says Frank Arkell, a chief software engineer at defense
contractor General Dynamics Decision Systems, which has used collaborative techniques for two decades. To
keep teams fresh, General Dynamics changes them for every project.

Another advantage to peer programming? Peer pressure. “No one wants to be the person that slacks off, so
they both work harder,” says Scott W. Ambler, president of Ronin International and an author and speaker on
agile development.

Illustration by Matthew
Bouchard

 By Erik Sherman July 19, 2002

7/29/02 1:25 PMTaking Programming to the Extreme

Page 1 of 2http://www.technologyreview.com/articles/print_version/wo_sherman071902.asp

Put to the Test

Collaborative approaches are also transforming the way software is tested. Traditionally, testing has been a two-step
process. First, programmers write code based on requirements. Then a separate group tests the result. But when
software includes millions of lines of code, the two-step process is analogous to designing an automobile on paper,
building it, then checking to see if the design worked.

That approach just didn’t work for developers like Nicholas Stamos, chief technical officer of Waltham, MA-based
Phase Forward. Phase Forward develops software for running pharmaceutical clinical trials, and its products
must pass the stringent requirements of the U.S. Food and Drug Administration.

Stamos says Phase Forward meets those requirements, in part because of close and constant collaboration
between the company’s programmers and quality assurance personnel. “You can’t throw it over the transom
and hope,” he says. “Quality has to be built in from day one.” When programmers complete a component, the
quality team checks their work. Then the teams swap places for another round of bug fixes. Finally, the
integrated application is tested to find problems with the interaction between components. Instead of the old
two-step approach, testing becomes an interactive, ongoing process.

Some companies are trying a similarly iterative approach not just to testing, but to designing code in the first
place. Cognizant Technology Solutions, a consulting firm based in Teaneck, NJ, has found that existing methods
of starting with formal specifications and then writing code to satisfy them might have worked 20 or 30 years
ago. But in a world that runs on the Web and needs flexibility, formal can mean stiff.

“When we tried to use the traditional processes for these newer types of projects, either the customers got
really frustrated because we forced them to freeze the process or the project teams would just not follow the
process,” says Cognizant CEO Kumar Mahadeva. Instead, projects use a series of prototypes followed by an
“industrialization” cycle, letting the firm handle sudden changes from customers in a way that has less impact on
reliability than adjusting a program after it is completed. Future users provide a steady stream of feedback as
the application takes shape.

But the ultimate limits on software quality may not lie in the skills of the programmers, or the strength of the
development process. “This is the conundrum that we and many manufacturers face today: what is an
acceptable level of quality?” says James Hymel, director of software engineering at Motorola. “If you have
competitors turning out cute, cheap, but buggy [products] and the customers say that is acceptable—that is,
they spend their money on them—you’d be challenged.”

With methods like agile development, partnering of development and testing, and the involvement of end-users,
software developers are taking steps to improve their product. But at the end of the day, the greatest
constraint to quality may be the same people demanding it the loudest: the consumers.

Erik Sherman is a contributing writer.

7/29/02 1:25 PMTaking Programming to the Extreme

Page 2 of 2http://www.technologyreview.com/articles/print_version/wo_sherman071902.asp

